Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate a novel approach to the use of jitter to infer network congestion using data collected by probes in access networks. We discovered a set of features in jitter and jitter dispersion —a jitter-derived time series we define in this paper—time series that are characteristic of periods of congestion. We leverage these concepts to create a jitter-based congestion inference framework that we call Jitterbug. We apply Jitterbug’s capabilities to a wide range of traffic scenarios and discover that Jitterbug can correctly identify both recurrent and one-off congestion events. We validate Jitterbug inferences against state-of-the-art autocorrelation-based inferences of recurrent congestion. We find that the two approaches have strong congruity in their inferences, but Jitterbug holds promise for detecting one-off as well as recurrent congestion. We identify several future directions for this research including leveraging ML/AI techniques to optimize performance and accuracy of this approach in operational settings.more » « less
-
IPv6's large address space allows ample freedom for choosing and assigning addresses. To improve client privacy and resist IP-based tracking, standardized techniques leverage this large address space, including privacy extensions and provider prefix rotation. Ephemeral and dynamic IPv6 addresses confound not only tracking and traffic correlation attempts, but also traditional network measurements, logging, and defense mechanisms. We show that the intended anti-tracking capability of these widely deployed mechanisms is unwittingly subverted by edge routers using legacy IPv6 addressing schemes that embed unique identifiers. We develop measurement techniques that exploit these legacy devices to make tracking such moving IPv6 clients feasible by combining intelligent search space reduction with modern high-speed active probing. Via an Internet-wide measurement campaign, we discover more than 9M affected edge routers and approximately 13k /48 prefixes employing prefix rotation in hundreds of ASes worldwide. We mount a six-week campaign to characterize the size and dynamics of these deployed IPv6 rotation pools, and demonstrate via a case study the ability to remotely track client address movements over time. We responsibly disclosed our findings to equipment manufacturers, at least one of which subsequently changed their default addressing logic.more » « less
-
In this paper, we explore a domain hijacking vulnerability that is an accidental byproduct of undocumented operational practices between domain registrars and registries. We show how over the last nine years over 512K domains have been implicitly exposed to the risk of hijacking, affecting names in most popular TLDs (including .com and .net) as well as legacy TLDs with tight registration control (such as .edu and .gov). Moreover, we show that this weakness has been actively exploited by multiple parties who, over the years, have assumed control over 163K domains without having any ownership interest in those names. In addition to characterizing the nature and size of this problem, we also report on the efficacy of the remediation in response to our outreach with registrars.more » « less
-
Public cloud platforms are vital in supporting online applications for remote learning and telecommuting during the COVID-19 pandemic. The network performance between cloud regions and access networks directly impacts application performance and users' quality of experience (QoE). However, the location and network connectivity of vantage points often limits the visibility of edge-based measurement platforms (e.g., RIPE Atlas). We designed and implemented the CLoud-based Applications Speed Platform (CLASP) to measure performance to various networks from virtual machines in cloud regions with speed test servers that have been widely deployed on the Internet. In our five-month longitudinal measurements in Google Cloud Platform (GCP), we found that 30-70% of ISPs we measured showed severe throughput degradation from the peak throughput of the day.more » « less
-
Using a toolbox of Internet cartography methods, and new ways of applying them, we have undertaken a comprehensive active measurement-driven study of the topology of U.S. regional access ISPs. We used state-of-the-art approaches in various combinations to accommodate the geographic scope, scale, and architectural richness of U.S. regional access ISPs. In addition to vantage points from research platforms, we used public WiFi hotspots and public transit of mobile devices to acquire the visibility needed to thoroughly map access networks across regions. We observed many different approaches to aggregation and redundancy, across links, nodes, buildings, and at different levels of the hierarchy. One result is substantial disparity in latency from some Edge COs to their backbone COs, with implications for end users of cloud services. Our methods and results can inform future analysis of critical infrastructure, including resilience to disasters, persistence of the digital divide, and challenges for the future of 5G and edge computing.more » « less
-
Public clouds fundamentally changed the Internet landscape, centralizing traffic generation in a handful of networks. Internet performance, robustness, and public policy analyses struggle to properly reflect this centralization, largely because public collections of BGP and traceroute reveal a small portion of cloud connectivity. This paper evaluates and improves our ability to infer cloud connectivity, bootstrapping future measurements and analyses that more accurately reflect the cloud-centric Internet. We also provide a technique for identifying the interconnections that clouds use to reach destinations around the world, allowing edge networks and enterprises to understand how clouds reach them via their public WAN. Finally, we present two techniques for geolocating the interconnections between cloud networks at the city level that can inform assessments of their resilience to link failures and help enterprises build multi-cloud applications and services.more » « less
An official website of the United States government
